Telegram Group & Telegram Channel
Почему однопоточный Redis такой быстрый?

В прошлом посте предложила вам задачку: сравнить Redis и велосипедик на основе ConcurrentHashMap + Spring MVC.

ConcurrentHashMap — многопоточный, и вроде должен быть лучше. Но именно однопоточный Redis является базовым выбором для кэша.

Как однопоточный Redis справляется с нагрузкой?

Секрет в том, как он работает с запросами. Есть 2 основные модели:

🌊 Каждый запрос обрабатывается в своем потоке (thread per request).

Такая модель используется, когда мы подключаем Spring MVC. Наш велосипедик тоже на ней работает.

У каждого потока свой стэк, переменные изолированы. Код легко писать, читать и дебажить. Идеальный вариант для сложных энтерпрайзных задач!

Но есть недостаток - число запросов в работе ограничено числом потоков в ОС. Обычно это несколько тысяч.

Из-за этой модели наш велосипед и проигрывает:
😒 Миллионы запросов просто не дойдут до ConcurrentHashMap, максимум несколько тысяч.
😒 Прочитать и записать в мэп - простые операции. Отправлять таких малышей в отдельный поток - как забивать краном гвозди. Очень большие накладные расходы на каждый запрос.

Redis использует другую модель:

🏃 EventLoop - малое число потоков бешено переключаются между запросами. В работу можно взять миллионы запросов!

Такая схема используется в реактивных серверах типа Netty, поддерживает многопоточность в JS и питоне.

Поэтому Redis и побеждает наш велосипед: возни с потоками нет, ограничений на запросы нет. Вся мощь процессора уходит на полезную работу, поэтому даже один поток справляется с большим объемом задач.

Можно ли взять лучшее из двух миров? Использовать многопоточность вместе с EventLoop?

Можно! Один поток Redis не использует все доступные ядра процессора, поэтому добавить десяток потоков - вполне рабочая идея.

Такую схему используют KeyDB и DragonflyDB. На сайте публикуют бенчмарки, где они обходят Redis в 5-25 раз. 25 раз звучит слишком мощно, но про 5-10 раз можно верить.

Почему чаще используется Redis, а не более быстрые альтернативы?

Потому что Redis появился в 2009, используется на сотнях проектов и закрепился в сознании как базовое решение для кэша. Подводные камни известны, инфраструктура налажена, куча статей и докладов.

KeyDB и DragonflyDB - свежие БД пирожки. Один вышел в 19 году, другой в 22. На конференциях особо не светились, громких кейсов внедрения пока нет.

Энтерпрайз мир тяжело принимает новые технологии. Плюс не всегда нужно лучшее решение, иногда достаточно хорошего😊



tg-me.com/java_fillthegaps/612
Create:
Last Update:

Почему однопоточный Redis такой быстрый?

В прошлом посте предложила вам задачку: сравнить Redis и велосипедик на основе ConcurrentHashMap + Spring MVC.

ConcurrentHashMap — многопоточный, и вроде должен быть лучше. Но именно однопоточный Redis является базовым выбором для кэша.

Как однопоточный Redis справляется с нагрузкой?

Секрет в том, как он работает с запросами. Есть 2 основные модели:

🌊 Каждый запрос обрабатывается в своем потоке (thread per request).

Такая модель используется, когда мы подключаем Spring MVC. Наш велосипедик тоже на ней работает.

У каждого потока свой стэк, переменные изолированы. Код легко писать, читать и дебажить. Идеальный вариант для сложных энтерпрайзных задач!

Но есть недостаток - число запросов в работе ограничено числом потоков в ОС. Обычно это несколько тысяч.

Из-за этой модели наш велосипед и проигрывает:
😒 Миллионы запросов просто не дойдут до ConcurrentHashMap, максимум несколько тысяч.
😒 Прочитать и записать в мэп - простые операции. Отправлять таких малышей в отдельный поток - как забивать краном гвозди. Очень большие накладные расходы на каждый запрос.

Redis использует другую модель:

🏃 EventLoop - малое число потоков бешено переключаются между запросами. В работу можно взять миллионы запросов!

Такая схема используется в реактивных серверах типа Netty, поддерживает многопоточность в JS и питоне.

Поэтому Redis и побеждает наш велосипед: возни с потоками нет, ограничений на запросы нет. Вся мощь процессора уходит на полезную работу, поэтому даже один поток справляется с большим объемом задач.

Можно ли взять лучшее из двух миров? Использовать многопоточность вместе с EventLoop?

Можно! Один поток Redis не использует все доступные ядра процессора, поэтому добавить десяток потоков - вполне рабочая идея.

Такую схему используют KeyDB и DragonflyDB. На сайте публикуют бенчмарки, где они обходят Redis в 5-25 раз. 25 раз звучит слишком мощно, но про 5-10 раз можно верить.

Почему чаще используется Redis, а не более быстрые альтернативы?

Потому что Redis появился в 2009, используется на сотнях проектов и закрепился в сознании как базовое решение для кэша. Подводные камни известны, инфраструктура налажена, куча статей и докладов.

KeyDB и DragonflyDB - свежие БД пирожки. Один вышел в 19 году, другой в 22. На конференциях особо не светились, громких кейсов внедрения пока нет.

Энтерпрайз мир тяжело принимает новые технологии. Плюс не всегда нужно лучшее решение, иногда достаточно хорошего😊

BY Java: fill the gaps


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/java_fillthegaps/612

View MORE
Open in Telegram


Java: fill the gaps Telegram | DID YOU KNOW?

Date: |

How To Find Channels On Telegram?

There are multiple ways you can search for Telegram channels. One of the methods is really logical and you should all know it by now. We’re talking about using Telegram’s native search option. Make sure to download Telegram from the official website or update it to the latest version, using this link. Once you’ve installed Telegram, you can simply open the app and use the search bar. Tap on the magnifier icon and search for a channel that might interest you (e.g. Marvel comics). Even though this is the easiest method for searching Telegram channels, it isn’t the best one. This method is limited because it shows you only a couple of results per search.

Why Telegram?

Telegram has no known backdoors and, even though it is come in for criticism for using proprietary encryption methods instead of open-source ones, those have yet to be compromised. While no messaging app can guarantee a 100% impermeable defense against determined attackers, Telegram is vulnerabilities are few and either theoretical or based on spoof files fooling users into actively enabling an attack.

Java: fill the gaps from tw


Telegram Java: fill the gaps
FROM USA